FIFTH SEMESTER – NOVEMBER 2015	
PH 5510 - QUANTUM MECHANICS AND RELATIVITY	
Date : 03/11/2015 Dept. No.	Max. : 100 Marks
Time : 09:00-12:00	
PART-A	
Answer ALL the questions:	(10x2=20 marks)
1) State de Broglie's hypothesis.	
2) State Heisenberg's uncertainty principle.	
3) Show whether $\{ = e^x$, is a physically admissible function for $x < 0$.	
4) Give the dimensions of a one and three dimensional wave function.	
5) What are stationary states?	
6) Calculate the degeneracy of the hydrogen atom in an n state without spin. 7) Obtain the velocity addition role in special theory of relativity	
8) A multimeson has a proper life time of $2r10^{-6}$ sec. If it moves with a speed of 0.00 c find its life time	
9) Why a particle cannot be accelerated to the speed of light?	
10) What is gravitational lensing?	
PART-B	
Answer any FOUR questions:	(4x7.5=30 marks)
11) Sketch an electron microscope and explain its functioning.	
12) State the postulates of quantum mechanics.	
13) Obtain the, one dimensional, time independent Schrodinger from the time dependent one.	
14) Explain the theory of alpha decay with the help of barrier penetration and obtain the Geiger – Nuttal law.	
15) Derive an expression for the variation of mass with speed.	
16) Obtain an expression for gravitational red shift.	
PART-C	
Answer any FOUR questions:	(4x12.5=50 marks)
17) a) Obtain an expression for the change in the wave length of a scattered photon, in Compton effect.	
b) Using Heisenberg's uncertainty relation argue that an electro cannot be inside a nucleus.	
18) a) Explain the significance of normalizing a wave function. Normalize the wave function	
$\mathbb{E} = \sin\left(\frac{nf}{L}x\right); 0 \le x \le L.$	

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION - PHYSICS

- b) Prove that the eigen values of a hermitian operator are real and the eigen functions corresponding to distinct eigen values are orthogonal.
- 19) Solve the radial wave equation for the hydrogen atom and obtain its eigen values.
- 20) a) Discuss in detail the Michelson –Morley experiment. What were the possible explanations for the null result?
- 21) Discuss the following:

a) Bending of light, b) Clock paradox and c) Precision of perihelion of Mercury.

22) State and Prove Ehrenfest theorems.

\$\$\$\$\$\$